Bilateral difference method for solving the boundary value problem for an ordinary differential equation
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 421-430
Cet article a éte moissonné depuis la source Math-Net.Ru
A method is proposed for calculating the bilateral approximations of the solution of the boundary value problem on $[0, 1]$ for the equation $y''+p(x)y'-q(x)y=f(x)$ and the derivative of the solution having the maximum deviation $O(h^2\omega(h)+h^3)$ on $\{kh\}_{k=0}^N$, where $\omega(t)$ is the sum of the continuity moduli of the functions $p''$, $q''$, $f''$, on the set of points $\{kh\}^N_{k=0}$, $h=1/N$ by means of $O(N)$ operations. The data obtained for fairly smooth $p$, $q$, $f$ allow interpolation to be used for calculating the bilateral approximations of the solution and its higher derivatives having the maximum deviation $O(h^3)$ on $[0, 1]$.
@article{MZM_1972_11_4_a8,
author = {E. A. Volkov},
title = {Bilateral difference method for solving the boundary value problem for an ordinary differential equation},
journal = {Matemati\v{c}eskie zametki},
pages = {421--430},
year = {1972},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a8/}
}
E. A. Volkov. Bilateral difference method for solving the boundary value problem for an ordinary differential equation. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 421-430. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a8/