Bilateral difference method for solving the boundary value problem for an ordinary differential equation
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 421-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed for calculating the bilateral approximations of the solution of the boundary value problem on $[0, 1]$ for the equation $y''+p(x)y'-q(x)y=f(x)$ and the derivative of the solution having the maximum deviation $O(h^2\omega(h)+h^3)$ on $\{kh\}_{k=0}^N$, where $\omega(t)$ is the sum of the continuity moduli of the functions $p''$, $q''$, $f''$, on the set of points $\{kh\}^N_{k=0}$, $h=1/N$ by means of $O(N)$ operations. The data obtained for fairly smooth $p$, $q$, $f$ allow interpolation to be used for calculating the bilateral approximations of the solution and its higher derivatives having the maximum deviation $O(h^3)$ on $[0, 1]$.
@article{MZM_1972_11_4_a8,
     author = {E. A. Volkov},
     title = {Bilateral difference method for solving the boundary value problem for an ordinary differential equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--430},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a8/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - Bilateral difference method for solving the boundary value problem for an ordinary differential equation
JO  - Matematičeskie zametki
PY  - 1972
SP  - 421
EP  - 430
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a8/
LA  - ru
ID  - MZM_1972_11_4_a8
ER  - 
%0 Journal Article
%A E. A. Volkov
%T Bilateral difference method for solving the boundary value problem for an ordinary differential equation
%J Matematičeskie zametki
%D 1972
%P 421-430
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a8/
%G ru
%F MZM_1972_11_4_a8
E. A. Volkov. Bilateral difference method for solving the boundary value problem for an ordinary differential equation. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 421-430. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a8/