On the structure of subgroups of a nilpotent nonperiodic group
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 389-396
Cet article a éte moissonné depuis la source Math-Net.Ru
The structural characteristic of the normal divisor in a locally nilpotent torsion-free group is given. Moreover, a property of structural isomorphisms of locally nilpotent groups containing no less than two independent elements of infinite order is proved: if $H$ is the subgroup of the mentioned group $G$, $N(H)$ is its normalizer in $G$, and $\varphi$ is a structural isomorphism of the group $G$, then $N(H)^\varphi=N(H^\varphi)$.
@article{MZM_1972_11_4_a4,
author = {A. S. Pekelis},
title = {On the structure of subgroups of a nilpotent nonperiodic group},
journal = {Matemati\v{c}eskie zametki},
pages = {389--396},
year = {1972},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a4/}
}
A. S. Pekelis. On the structure of subgroups of a nilpotent nonperiodic group. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 389-396. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a4/