On the class number of exact ideals for $Z$-rings in a commutative $Q$-algebra
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 381-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finiteness of the class number of exact $\Lambda$-ideals for a $Z$-ring $\Lambda$ in a commutative algebra with unity over the rational number field is proved.
@article{MZM_1972_11_4_a3,
     author = {I. A. Levina},
     title = {On the class number of exact ideals for $Z$-rings in a commutative $Q$-algebra},
     journal = {Matemati\v{c}eskie zametki},
     pages = {381--388},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a3/}
}
TY  - JOUR
AU  - I. A. Levina
TI  - On the class number of exact ideals for $Z$-rings in a commutative $Q$-algebra
JO  - Matematičeskie zametki
PY  - 1972
SP  - 381
EP  - 388
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a3/
LA  - ru
ID  - MZM_1972_11_4_a3
ER  - 
%0 Journal Article
%A I. A. Levina
%T On the class number of exact ideals for $Z$-rings in a commutative $Q$-algebra
%J Matematičeskie zametki
%D 1972
%P 381-388
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a3/
%G ru
%F MZM_1972_11_4_a3
I. A. Levina. On the class number of exact ideals for $Z$-rings in a commutative $Q$-algebra. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 381-388. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a3/