Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 447-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

Structures of higher order determined on a manifold $V_n$ by a differential form of degree $n--1$, which depends on a tangential $(n-1)^p$-element, are considered. The associated nonlinear and linear connections in the corresponding principal fibrations are studied. (See [3] for terminology.)
@article{MZM_1972_11_4_a11,
     author = {L. E. Evtushik},
     title = {Nonlinear $(n-1)^p$-connections in metric {Cartan} spaces of higher order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {447--458},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a11/}
}
TY  - JOUR
AU  - L. E. Evtushik
TI  - Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order
JO  - Matematičeskie zametki
PY  - 1972
SP  - 447
EP  - 458
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a11/
LA  - ru
ID  - MZM_1972_11_4_a11
ER  - 
%0 Journal Article
%A L. E. Evtushik
%T Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order
%J Matematičeskie zametki
%D 1972
%P 447-458
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a11/
%G ru
%F MZM_1972_11_4_a11
L. E. Evtushik. Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 447-458. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a11/