Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 447-458
Cet article a éte moissonné depuis la source Math-Net.Ru
Structures of higher order determined on a manifold $V_n$ by a differential form of degree $n--1$, which depends on a tangential $(n-1)^p$-element, are considered. The associated nonlinear and linear connections in the corresponding principal fibrations are studied. (See [3] for terminology.)
@article{MZM_1972_11_4_a11,
author = {L. E. Evtushik},
title = {Nonlinear $(n-1)^p$-connections in metric {Cartan} spaces of higher order},
journal = {Matemati\v{c}eskie zametki},
pages = {447--458},
year = {1972},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a11/}
}
L. E. Evtushik. Nonlinear $(n-1)^p$-connections in metric Cartan spaces of higher order. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 447-458. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a11/