On the best approximation in the mean of continuous functions by polynomials, which are majorized by a given function
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 365-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the problem of the best approximation in the mean of functions, which are continuous on a segment, by the polynomials in a differentiable Chebyshev system that do not exceed a given differentiable function. We prove that the extremal polynomial is unique and develop its characteristic properties.
@article{MZM_1972_11_4_a1,
     author = {V. A. Kaminskii},
     title = {On the best approximation in the mean of continuous functions by polynomials, which are majorized by a given function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {365--374},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a1/}
}
TY  - JOUR
AU  - V. A. Kaminskii
TI  - On the best approximation in the mean of continuous functions by polynomials, which are majorized by a given function
JO  - Matematičeskie zametki
PY  - 1972
SP  - 365
EP  - 374
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a1/
LA  - ru
ID  - MZM_1972_11_4_a1
ER  - 
%0 Journal Article
%A V. A. Kaminskii
%T On the best approximation in the mean of continuous functions by polynomials, which are majorized by a given function
%J Matematičeskie zametki
%D 1972
%P 365-374
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a1/
%G ru
%F MZM_1972_11_4_a1
V. A. Kaminskii. On the best approximation in the mean of continuous functions by polynomials, which are majorized by a given function. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 365-374. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a1/