Interpolational problem of Abel
Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 353-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the uniqueness class of the solution of the problem concerning reconstruction of an entire function $F(z)$ of exponential type from a knowledge of the values of its derivatives $F^{(n)}(\pm hn)$, $n=0,1,\dots$ ($h>0$).
@article{MZM_1972_11_4_a0,
     author = {Yu. A. Kaz'min},
     title = {Interpolational problem of {Abel}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {353--364},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a0/}
}
TY  - JOUR
AU  - Yu. A. Kaz'min
TI  - Interpolational problem of Abel
JO  - Matematičeskie zametki
PY  - 1972
SP  - 353
EP  - 364
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a0/
LA  - ru
ID  - MZM_1972_11_4_a0
ER  - 
%0 Journal Article
%A Yu. A. Kaz'min
%T Interpolational problem of Abel
%J Matematičeskie zametki
%D 1972
%P 353-364
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a0/
%G ru
%F MZM_1972_11_4_a0
Yu. A. Kaz'min. Interpolational problem of Abel. Matematičeskie zametki, Tome 11 (1972) no. 4, pp. 353-364. http://geodesic.mathdoc.fr/item/MZM_1972_11_4_a0/