Spline polynomials with a prescribed sequence of extrema
Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 251-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note a theorem about strong suitability of the space of algebraic polynomials of degree $\leqslant n$ in $C_{[a,b]}$ (Theorem A in [1]) is generalized to the space of spline polynomials $\mathcal{S}^{n,k}_{[a,b]}$ ($n\geqslant2$, $k\geqslant0$) in $C_{[a,b]}$. Namely, it is shown that the following theorem is valid: for arbitrary numbers $\eta_0,\eta_1,\dots,\eta_{n+k}$, satisfying the conditions $(\eta_i-\eta_{i-1})(\eta_{i+1}-\eta_i)0$ ($i=1,\dots,n+k-1$), there is a unique polynomial $s_{n,k}(t)\in \mathcal{S}^{n,k}_{[a,b]}$ and points $a=\xi_0\xi_1\dots\xi_{n+k-1}\xi_{n+k}=b$ ($\xi_1$), such that $s_{n,k}(\xi_i)=\eta_i$ ($i=0,\dots,n+k$), $s'_{n,k}(\xi_i)=0$ ($i=1,\dots,n+k-1$).
@article{MZM_1972_11_3_a2,
     author = {M. B. Korobkova},
     title = {Spline polynomials with a prescribed sequence of extrema},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a2/}
}
TY  - JOUR
AU  - M. B. Korobkova
TI  - Spline polynomials with a prescribed sequence of extrema
JO  - Matematičeskie zametki
PY  - 1972
SP  - 251
EP  - 258
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a2/
LA  - ru
ID  - MZM_1972_11_3_a2
ER  - 
%0 Journal Article
%A M. B. Korobkova
%T Spline polynomials with a prescribed sequence of extrema
%J Matematičeskie zametki
%D 1972
%P 251-258
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a2/
%G ru
%F MZM_1972_11_3_a2
M. B. Korobkova. Spline polynomials with a prescribed sequence of extrema. Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 251-258. http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a2/