Spline polynomials with a prescribed sequence of extrema
Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 251-258
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present note a theorem about strong suitability of the space of algebraic polynomials of degree $\leqslant n$ in $C_{[a,b]}$ (Theorem A in [1]) is generalized to the space of spline polynomials $\mathcal{S}^{n,k}_{[a,b]}$ ($n\geqslant2$, $k\geqslant0$) in $C_{[a,b]}$. Namely, it is shown that the following theorem is valid: for arbitrary numbers $\eta_0,\eta_1,\dots,\eta_{n+k}$, satisfying the conditions $(\eta_i-\eta_{i-1})(\eta_{i+1}-\eta_i)0$ ($i=1,\dots,n+k-1$), there is a unique polynomial $s_{n,k}(t)\in \mathcal{S}^{n,k}_{[a,b]}$ and points $a=\xi_0\xi_1\dots\xi_{n+k-1}\xi_{n+k}=b$ ($\xi_1$), such that $s_{n,k}(\xi_i)=\eta_i$ ($i=0,\dots,n+k$), $s'_{n,k}(\xi_i)=0$ ($i=1,\dots,n+k-1$).
@article{MZM_1972_11_3_a2,
author = {M. B. Korobkova},
title = {Spline polynomials with a prescribed sequence of extrema},
journal = {Matemati\v{c}eskie zametki},
pages = {251--258},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a2/}
}
M. B. Korobkova. Spline polynomials with a prescribed sequence of extrema. Matematičeskie zametki, Tome 11 (1972) no. 3, pp. 251-258. http://geodesic.mathdoc.fr/item/MZM_1972_11_3_a2/