Class of topologies in spaces of continuous functions
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 201-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be an arbitrary topological space, and let $C(S)$ be the space of continuous real-valued functions on $S$. A certain class of topologies on $C(S)$ is studied. Some cases are indicated in which topologies of a given class on $C(S)$ are topologies of uniform convergence on compact sets of $S$.
@article{MZM_1972_11_2_a9,
     author = {I. I. Perepechai},
     title = {Class of topologies in spaces of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a9/}
}
TY  - JOUR
AU  - I. I. Perepechai
TI  - Class of topologies in spaces of continuous functions
JO  - Matematičeskie zametki
PY  - 1972
SP  - 201
EP  - 208
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a9/
LA  - ru
ID  - MZM_1972_11_2_a9
ER  - 
%0 Journal Article
%A I. I. Perepechai
%T Class of topologies in spaces of continuous functions
%J Matematičeskie zametki
%D 1972
%P 201-208
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a9/
%G ru
%F MZM_1972_11_2_a9
I. I. Perepechai. Class of topologies in spaces of continuous functions. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 201-208. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a9/