Nilpotency of the multiplicative group of a group ring
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 191-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven that if $K$ is a commutative ring of characteristic $p^m$ while group $G$ contains $p$-elements, then the multiplicative group $UKG$ of group ring $KG$ is nilpotent if and only if $G$ is nilpotent and its commutant $G'$ is a finite $p$-group. Those group algebras $KG$ are described for which the nilpotency classes of groups $G$ and $UKG$ coincide.
@article{MZM_1972_11_2_a8,
     author = {I. I. Khripta},
     title = {Nilpotency of the multiplicative group of a group ring},
     journal = {Matemati\v{c}eskie zametki},
     pages = {191--200},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a8/}
}
TY  - JOUR
AU  - I. I. Khripta
TI  - Nilpotency of the multiplicative group of a group ring
JO  - Matematičeskie zametki
PY  - 1972
SP  - 191
EP  - 200
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a8/
LA  - ru
ID  - MZM_1972_11_2_a8
ER  - 
%0 Journal Article
%A I. I. Khripta
%T Nilpotency of the multiplicative group of a group ring
%J Matematičeskie zametki
%D 1972
%P 191-200
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a8/
%G ru
%F MZM_1972_11_2_a8
I. I. Khripta. Nilpotency of the multiplicative group of a group ring. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 191-200. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a8/