Relatively free, nearly nilpotent groups
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 175-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a free nilpotent group of countable rank, as well as a free group of countable rank of the variety defined by the identity $[[x_1,x_2,\dots,x_n],[x_{n+1},x_{n+2}]]=1$, satisfies the maximal condition for normal subgroups admitting endomorphisms induced by order preserving one-to-one mappings of the set of free generators into itself.
@article{MZM_1972_11_2_a6,
     author = {I. D. Ivanyuta},
     title = {Relatively free, nearly nilpotent groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {175--182},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a6/}
}
TY  - JOUR
AU  - I. D. Ivanyuta
TI  - Relatively free, nearly nilpotent groups
JO  - Matematičeskie zametki
PY  - 1972
SP  - 175
EP  - 182
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a6/
LA  - ru
ID  - MZM_1972_11_2_a6
ER  - 
%0 Journal Article
%A I. D. Ivanyuta
%T Relatively free, nearly nilpotent groups
%J Matematičeskie zametki
%D 1972
%P 175-182
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a6/
%G ru
%F MZM_1972_11_2_a6
I. D. Ivanyuta. Relatively free, nearly nilpotent groups. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 175-182. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a6/