Relatively free, nearly nilpotent groups
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 175-182
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that a free nilpotent group of countable rank, as well as a free group of countable rank of the variety defined by the identity $[[x_1,x_2,\dots,x_n],[x_{n+1},x_{n+2}]]=1$, satisfies the maximal condition for normal subgroups admitting endomorphisms induced by order preserving one-to-one mappings of the set of free generators into itself.
@article{MZM_1972_11_2_a6,
author = {I. D. Ivanyuta},
title = {Relatively free, nearly nilpotent groups},
journal = {Matemati\v{c}eskie zametki},
pages = {175--182},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a6/}
}
I. D. Ivanyuta. Relatively free, nearly nilpotent groups. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 175-182. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a6/