Boundary property of $n$-dimensional mappings with bounded distortion
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 159-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following assertion is proved: let $f: B\to R^n$ be an arbitrary (in general, not single-sheeted) mapping with bounded distortion of an $n$-dimensional sphere $B$, satisfying the conditions: A) the set $f(B)$ is bounded; B) the partial derivatives $\frac{\partial f_i}{\partial x_j}$ ($i,j=1,2,\dots,n$) are summable with respect to $B$ with degree $\alpha$ ($1\alpha\leqslant n$). Then the mapping $f$ has angular boundary values everywhere on the boundary of the sphere with the possible exception of a set of $\alpha$-capacity zero.
@article{MZM_1972_11_2_a4,
     author = {V. M. Miklyukov},
     title = {Boundary property of $n$-dimensional mappings with bounded distortion},
     journal = {Matemati\v{c}eskie zametki},
     pages = {159--164},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a4/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - Boundary property of $n$-dimensional mappings with bounded distortion
JO  - Matematičeskie zametki
PY  - 1972
SP  - 159
EP  - 164
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a4/
LA  - ru
ID  - MZM_1972_11_2_a4
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T Boundary property of $n$-dimensional mappings with bounded distortion
%J Matematičeskie zametki
%D 1972
%P 159-164
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a4/
%G ru
%F MZM_1972_11_2_a4
V. M. Miklyukov. Boundary property of $n$-dimensional mappings with bounded distortion. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 159-164. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a4/