Boundary property of $n$-dimensional mappings with bounded distortion
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 159-164
Cet article a éte moissonné depuis la source Math-Net.Ru
The following assertion is proved: let $f: B\to R^n$ be an arbitrary (in general, not single-sheeted) mapping with bounded distortion of an $n$-dimensional sphere $B$, satisfying the conditions: A) the set $f(B)$ is bounded; B) the partial derivatives $\frac{\partial f_i}{\partial x_j}$ ($i,j=1,2,\dots,n$) are summable with respect to $B$ with degree $\alpha$ ($1<\alpha\leqslant n$). Then the mapping $f$ has angular boundary values everywhere on the boundary of the sphere with the possible exception of a set of $\alpha$-capacity zero.
@article{MZM_1972_11_2_a4,
author = {V. M. Miklyukov},
title = {Boundary property of $n$-dimensional mappings with bounded distortion},
journal = {Matemati\v{c}eskie zametki},
pages = {159--164},
year = {1972},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a4/}
}
V. M. Miklyukov. Boundary property of $n$-dimensional mappings with bounded distortion. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 159-164. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a4/