The question of $A^*$-summability of double trigonometric Fourier series
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 145-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any $f(x, y)\in L(R)$, where $R=[-\pi,\pi,-\pi,\pi]$, a function $\varphi(x, y)$, exists such that $|\varphi(x,y)|=|f(x,y)|$ for almost all $(x,y)\in R$. The Fourier series of the function $\varphi(x,y)$ and all conjugate trigonometric series are $A^*$-summable almost everywhere.
@article{MZM_1972_11_2_a2,
     author = {L. D. Gogoladze},
     title = {The question of $A^*$-summability of double trigonometric {Fourier} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {145--150},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a2/}
}
TY  - JOUR
AU  - L. D. Gogoladze
TI  - The question of $A^*$-summability of double trigonometric Fourier series
JO  - Matematičeskie zametki
PY  - 1972
SP  - 145
EP  - 150
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a2/
LA  - ru
ID  - MZM_1972_11_2_a2
ER  - 
%0 Journal Article
%A L. D. Gogoladze
%T The question of $A^*$-summability of double trigonometric Fourier series
%J Matematičeskie zametki
%D 1972
%P 145-150
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a2/
%G ru
%F MZM_1972_11_2_a2
L. D. Gogoladze. The question of $A^*$-summability of double trigonometric Fourier series. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 145-150. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a2/