Approximation by cubic splines in the classes of continuously differentiable functions
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 215-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of approximating continuously differentiable periodic functions $f(x)$ by cubic interpolation splines $s_n(f;x)$ with equidistant nodes is considered. Asymptotically exact estimates for $||f(x)-s_n(f;x)||_C$ are obtained in the classes of functions $W^1H_\omega$.
@article{MZM_1972_11_2_a11,
     author = {V. L. Velikin},
     title = {Approximation by cubic splines in the classes of continuously differentiable functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {215--226},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a11/}
}
TY  - JOUR
AU  - V. L. Velikin
TI  - Approximation by cubic splines in the classes of continuously differentiable functions
JO  - Matematičeskie zametki
PY  - 1972
SP  - 215
EP  - 226
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a11/
LA  - ru
ID  - MZM_1972_11_2_a11
ER  - 
%0 Journal Article
%A V. L. Velikin
%T Approximation by cubic splines in the classes of continuously differentiable functions
%J Matematičeskie zametki
%D 1972
%P 215-226
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a11/
%G ru
%F MZM_1972_11_2_a11
V. L. Velikin. Approximation by cubic splines in the classes of continuously differentiable functions. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a11/