Approximation by cubic splines in the classes of continuously differentiable functions
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 215-226
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of approximating continuously differentiable periodic functions $f(x)$ by cubic interpolation splines $s_n(f;x)$ with equidistant nodes is considered. Asymptotically exact estimates for $||f(x)-s_n(f;x)||_C$ are obtained in the classes of functions $W^1H_\omega$.
@article{MZM_1972_11_2_a11,
author = {V. L. Velikin},
title = {Approximation by cubic splines in the classes of continuously differentiable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {215--226},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a11/}
}
V. L. Velikin. Approximation by cubic splines in the classes of continuously differentiable functions. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a11/