Conditionally convergent series in a uniformly smooth Banach space
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 209-214
Voir la notice de l'article provenant de la source Math-Net.Ru
The theorem of Steinitz on the form of the set of points which are sums of convergent rearrangements of a given series is extended to series $\sum x_k$ in the uniformly smooth Banach space $X$ with modulus of smoothness $\rho(t)$, satisfying the condition $\sum\rho(||x_k||)\infty$.
@article{MZM_1972_11_2_a10,
author = {V. P. Fonf},
title = {Conditionally convergent series in a uniformly smooth {Banach} space},
journal = {Matemati\v{c}eskie zametki},
pages = {209--214},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a10/}
}
V. P. Fonf. Conditionally convergent series in a uniformly smooth Banach space. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 209-214. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a10/