Piecewise polynomial approximation
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 129-134
Voir la notice de l'article provenant de la source Math-Net.Ru
For best piecewise polynomial approximation $\mathscr{E}_n=\mathscr{E}_n(f;[0, 1])$ of a function $f$, which is continuous on the interval $[0,1]$ and admits a bounded analytic continuation onto the disk $K=\{z: |z-1|1\}$, the relation $\mathscr{E}_n=O[\omega_f(e^{-\sqrt{n}})]$ is valid.
@article{MZM_1972_11_2_a0,
author = {A. A. Gonchar},
title = {Piecewise polynomial approximation},
journal = {Matemati\v{c}eskie zametki},
pages = {129--134},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a0/}
}
A. A. Gonchar. Piecewise polynomial approximation. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 129-134. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a0/