Piecewise polynomial approximation
Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 129-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

For best piecewise polynomial approximation $\mathscr{E}_n=\mathscr{E}_n(f;[0, 1])$ of a function $f$, which is continuous on the interval $[0,1]$ and admits a bounded analytic continuation onto the disk $K=\{z: |z-1|1\}$, the relation $\mathscr{E}_n=O[\omega_f(e^{-\sqrt{n}})]$ is valid.
@article{MZM_1972_11_2_a0,
     author = {A. A. Gonchar},
     title = {Piecewise polynomial approximation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a0/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - Piecewise polynomial approximation
JO  - Matematičeskie zametki
PY  - 1972
SP  - 129
EP  - 134
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a0/
LA  - ru
ID  - MZM_1972_11_2_a0
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T Piecewise polynomial approximation
%J Matematičeskie zametki
%D 1972
%P 129-134
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a0/
%G ru
%F MZM_1972_11_2_a0
A. A. Gonchar. Piecewise polynomial approximation. Matematičeskie zametki, Tome 11 (1972) no. 2, pp. 129-134. http://geodesic.mathdoc.fr/item/MZM_1972_11_2_a0/