Universal coefficient formulas for stable $K$-theory
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 53-60
Voir la notice de l'article provenant de la source Math-Net.Ru
The goal of this paper is to establish a Künneth spectral sequence and the connections between the stable complex $K$-functor $k^*$ and other generalized cohomology theories for some classes of cell complexes (Theorems 1 and 3). In Theorem 2 criteria are formulated for a finite cell complex to admit a $k^*$-resolution. Analogous results were also obtained by Landweber [3].
@article{MZM_1972_11_1_a6,
author = {N. V. Panov},
title = {Universal coefficient formulas for stable $K$-theory},
journal = {Matemati\v{c}eskie zametki},
pages = {53--60},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a6/}
}
N. V. Panov. Universal coefficient formulas for stable $K$-theory. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 53-60. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a6/