Projective and free ordered modules
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper introduces the concepts of $o$-free and $o$-projective modules over directed ring $R$. Some sufficient conditions are established under which all $o$-projective $R$-modules are $o$-free. In particular, it is proven that all $o$-projective $R$-modules are $o$-free in the cases: linearly ordered rings $R$ without divisors of zero in which each element $0$ is invertible; commutative factorable domain of integrity with any linear order; commutative rings without divisors of zero in which all projective modules are free with any linear order.
@article{MZM_1972_11_1_a5,
     author = {A. V. Mikhalev and M. A. Shatalova},
     title = {Projective and free ordered modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a5/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - M. A. Shatalova
TI  - Projective and free ordered modules
JO  - Matematičeskie zametki
PY  - 1972
SP  - 41
EP  - 52
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a5/
LA  - ru
ID  - MZM_1972_11_1_a5
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A M. A. Shatalova
%T Projective and free ordered modules
%J Matematičeskie zametki
%D 1972
%P 41-52
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a5/
%G ru
%F MZM_1972_11_1_a5
A. V. Mikhalev; M. A. Shatalova. Projective and free ordered modules. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a5/