Associative rings the radicals over which are subrings
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 33-40
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper studies the structure of algebras which are radicals over $PI$-subalgebras. In particular, a theorem is proven to the effect that an algebra without nil-ideals which is a radical over a right $PI$-ideal is a $PI$-algebra.
@article{MZM_1972_11_1_a4,
author = {Yu. N. Mal'tsev},
title = {Associative rings the radicals over which are subrings},
journal = {Matemati\v{c}eskie zametki},
pages = {33--40},
year = {1972},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a4/}
}
Yu. N. Mal'tsev. Associative rings the radicals over which are subrings. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 33-40. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a4/