Associative rings the radicals over which are subrings
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the structure of algebras which are radicals over $PI$-subalgebras. In particular, a theorem is proven to the effect that an algebra without nil-ideals which is a radical over a right $PI$-ideal is a $PI$-algebra.
@article{MZM_1972_11_1_a4,
     author = {Yu. N. Mal'tsev},
     title = {Associative rings the radicals over which are subrings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a4/}
}
TY  - JOUR
AU  - Yu. N. Mal'tsev
TI  - Associative rings the radicals over which are subrings
JO  - Matematičeskie zametki
PY  - 1972
SP  - 33
EP  - 40
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a4/
LA  - ru
ID  - MZM_1972_11_1_a4
ER  - 
%0 Journal Article
%A Yu. N. Mal'tsev
%T Associative rings the radicals over which are subrings
%J Matematičeskie zametki
%D 1972
%P 33-40
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a4/
%G ru
%F MZM_1972_11_1_a4
Yu. N. Mal'tsev. Associative rings the radicals over which are subrings. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 33-40. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a4/