The group $F^2K(X)$ as a birational invariant of a surface
Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 15-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The birational invariance is proved of the group $F^2K(X)$, where $X$ is a smooth projective surface over a field.
@article{MZM_1972_11_1_a1,
     author = {L. R. Gorodetskii},
     title = {The group $F^2K(X)$ as a birational invariant of a surface},
     journal = {Matemati\v{c}eskie zametki},
     pages = {15--20},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a1/}
}
TY  - JOUR
AU  - L. R. Gorodetskii
TI  - The group $F^2K(X)$ as a birational invariant of a surface
JO  - Matematičeskie zametki
PY  - 1972
SP  - 15
EP  - 20
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a1/
LA  - ru
ID  - MZM_1972_11_1_a1
ER  - 
%0 Journal Article
%A L. R. Gorodetskii
%T The group $F^2K(X)$ as a birational invariant of a surface
%J Matematičeskie zametki
%D 1972
%P 15-20
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a1/
%G ru
%F MZM_1972_11_1_a1
L. R. Gorodetskii. The group $F^2K(X)$ as a birational invariant of a surface. Matematičeskie zametki, Tome 11 (1972) no. 1, pp. 15-20. http://geodesic.mathdoc.fr/item/MZM_1972_11_1_a1/