Verbal subgroups of complete direct products of groups
Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 687-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $V(X)$ is a proper verbal subgroup of a free group $X$ of countable rank, then a verbal subgroup $V(H)$ of the complete direct product $H=\widetilde\Pi^\times X_i$ of a countable number of isomorphic copies $X_i$ of $X$ differs from the complete direct product $\widetilde\Pi^\times V(X_i)$.
@article{MZM_1971_9_6_a8,
     author = {S. A. Ashmanov},
     title = {Verbal subgroups of complete direct products of groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--692},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a8/}
}
TY  - JOUR
AU  - S. A. Ashmanov
TI  - Verbal subgroups of complete direct products of groups
JO  - Matematičeskie zametki
PY  - 1971
SP  - 687
EP  - 692
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a8/
LA  - ru
ID  - MZM_1971_9_6_a8
ER  - 
%0 Journal Article
%A S. A. Ashmanov
%T Verbal subgroups of complete direct products of groups
%J Matematičeskie zametki
%D 1971
%P 687-692
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a8/
%G ru
%F MZM_1971_9_6_a8
S. A. Ashmanov. Verbal subgroups of complete direct products of groups. Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 687-692. http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a8/