Periodic solutions of evolutionary equations
Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 651-662
Cet article a éte moissonné depuis la source Math-Net.Ru
An analog of L. Cesari's method for a very general class of evolutionary equations is investigated. A result is proved concerning the coincidence of rotation of a Cesari field with the rotation of a translation operator (on boundaries of naturally corresponding regions), and Galerkin's method of obtaining periodic solutions is studied. The results obtained are new for ordinary differential equations.
@article{MZM_1971_9_6_a4,
author = {P. P. Zabreiko and S. O. Strygina},
title = {Periodic solutions of evolutionary equations},
journal = {Matemati\v{c}eskie zametki},
pages = {651--662},
year = {1971},
volume = {9},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a4/}
}
P. P. Zabreiko; S. O. Strygina. Periodic solutions of evolutionary equations. Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 651-662. http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a4/