The infinitely differentiable extension of systems of functions
Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 723-734.

Voir la notice de l'article provenant de la source Math-Net.Ru

The “best” extension of systems of functions of real variables from an $(n-1)$-dimensional hyperplane $E_{n?1}$ to the whole of $E_n$ is investigated. It is shown that extension can be realized to a function, infinitely differentiable outside $E_{n?1}$, whose derivatives have in a certain sense the best possible rate of growth close to $E_{n?1}$ functions (the $B$-class).
@article{MZM_1971_9_6_a13,
     author = {O. A. Gavrilova},
     title = {The infinitely differentiable extension of systems of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--734},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a13/}
}
TY  - JOUR
AU  - O. A. Gavrilova
TI  - The infinitely differentiable extension of systems of functions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 723
EP  - 734
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a13/
LA  - ru
ID  - MZM_1971_9_6_a13
ER  - 
%0 Journal Article
%A O. A. Gavrilova
%T The infinitely differentiable extension of systems of functions
%J Matematičeskie zametki
%D 1971
%P 723-734
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a13/
%G ru
%F MZM_1971_9_6_a13
O. A. Gavrilova. The infinitely differentiable extension of systems of functions. Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 723-734. http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a13/