Time of the first departure from an~interval for a~continuous homogeneous random walk on a~line
Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 713-721.

Voir la notice de l'article provenant de la source Math-Net.Ru

An investigation of a continuous homogeneous random walk possessing the Markov property with respect to times of passing any given level in a given direction. The existence and uniqueness of four functions characterizing the process is proved.
@article{MZM_1971_9_6_a12,
     author = {B. P. Harlamov},
     title = {Time of the first departure from an~interval for a~continuous homogeneous random walk on a~line},
     journal = {Matemati\v{c}eskie zametki},
     pages = {713--721},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a12/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Time of the first departure from an~interval for a~continuous homogeneous random walk on a~line
JO  - Matematičeskie zametki
PY  - 1971
SP  - 713
EP  - 721
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a12/
LA  - ru
ID  - MZM_1971_9_6_a12
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Time of the first departure from an~interval for a~continuous homogeneous random walk on a~line
%J Matematičeskie zametki
%D 1971
%P 713-721
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a12/
%G ru
%F MZM_1971_9_6_a12
B. P. Harlamov. Time of the first departure from an~interval for a~continuous homogeneous random walk on a~line. Matematičeskie zametki, Tome 9 (1971) no. 6, pp. 713-721. http://geodesic.mathdoc.fr/item/MZM_1971_9_6_a12/