Analogs of Chevalley modules in Hochschild cohomology theory
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 561-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogs of Chevalley's modules are introduced for a Frobenius $Z$-algebra $\Lambda$. Up to a certain equivalence relation, they form a cyclic group with respect to $\Lambda$-tensor multiplication. The complete projective resolvent of the ring $\Lambda$ is constructed.
@article{MZM_1971_9_5_a9,
     author = {F. R. Bobovich},
     title = {Analogs of {Chevalley} modules in {Hochschild} cohomology theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--568},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a9/}
}
TY  - JOUR
AU  - F. R. Bobovich
TI  - Analogs of Chevalley modules in Hochschild cohomology theory
JO  - Matematičeskie zametki
PY  - 1971
SP  - 561
EP  - 568
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a9/
LA  - ru
ID  - MZM_1971_9_5_a9
ER  - 
%0 Journal Article
%A F. R. Bobovich
%T Analogs of Chevalley modules in Hochschild cohomology theory
%J Matematičeskie zametki
%D 1971
%P 561-568
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a9/
%G ru
%F MZM_1971_9_5_a9
F. R. Bobovich. Analogs of Chevalley modules in Hochschild cohomology theory. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a9/