A class of orthogonal polynomials
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 511-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The order of the distance between zeros of orthogonal and of quasiorthogonal polynomials is determined, and also the order of the Christoffel function if the weight function $w(x)=q(x)e^{-x}$ satisfies certain conditions. As a special case, lower and upper bounds are found for the distance between zeros of $L_n^\alpha(x)+AL_{n-1}^\alpha(x)$, where $L_n^\alpha$ is the $n$-th order Laguerre polynomial.
@article{MZM_1971_9_5_a4,
     author = {G. Froid},
     title = {A~class of orthogonal polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--520},
     year = {1971},
     volume = {9},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a4/}
}
TY  - JOUR
AU  - G. Froid
TI  - A class of orthogonal polynomials
JO  - Matematičeskie zametki
PY  - 1971
SP  - 511
EP  - 520
VL  - 9
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a4/
LA  - ru
ID  - MZM_1971_9_5_a4
ER  - 
%0 Journal Article
%A G. Froid
%T A class of orthogonal polynomials
%J Matematičeskie zametki
%D 1971
%P 511-520
%V 9
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a4/
%G ru
%F MZM_1971_9_5_a4
G. Froid. A class of orthogonal polynomials. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 511-520. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a4/