A~class of orthogonal polynomials
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 511-520
Voir la notice de l'article provenant de la source Math-Net.Ru
The order of the distance between zeros of orthogonal and of quasiorthogonal polynomials is determined, and also the order of the Christoffel function if the weight function $w(x)=q(x)e^{-x}$ satisfies certain conditions. As a special case, lower and upper bounds are found for the distance between zeros of $L_n^\alpha(x)+AL_{n-1}^\alpha(x)$, where $L_n^\alpha$ is the $n$-th order Laguerre polynomial.
@article{MZM_1971_9_5_a4,
author = {G. Froid},
title = {A~class of orthogonal polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {511--520},
publisher = {mathdoc},
volume = {9},
number = {5},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a4/}
}
G. Froid. A~class of orthogonal polynomials. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 511-520. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a4/