Accurate estimates of deviations of spline approximations to classes of differentiable functions
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 483-494.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive the approximation on $[0,1]$ of functions $f(x)$ by interpolating spline-functions $s_r(f;x)$ of degree $2r+1$ and defect $r+1$ ($r=1,2,\dots$). Exact estimates for $|f(x)-s_r(f;x)|$ and $\|f(x)-s_r(f;x)\|_C$ on the class $W^mH_\omega$ for $m=1$, $r=1,2,\dots$ and $m=2,3$, $r=2$ for the case of convex $\omega(t)$, are derived.
@article{MZM_1971_9_5_a1,
     author = {V. L. Velikin and N. P. Korneichuk},
     title = {Accurate estimates of deviations of spline approximations to classes of differentiable functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--494},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/}
}
TY  - JOUR
AU  - V. L. Velikin
AU  - N. P. Korneichuk
TI  - Accurate estimates of deviations of spline approximations to classes of differentiable functions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 483
EP  - 494
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/
LA  - ru
ID  - MZM_1971_9_5_a1
ER  - 
%0 Journal Article
%A V. L. Velikin
%A N. P. Korneichuk
%T Accurate estimates of deviations of spline approximations to classes of differentiable functions
%J Matematičeskie zametki
%D 1971
%P 483-494
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/
%G ru
%F MZM_1971_9_5_a1
V. L. Velikin; N. P. Korneichuk. Accurate estimates of deviations of spline approximations to classes of differentiable functions. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/