Accurate estimates of deviations of spline approximations to classes of differentiable functions
Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 483-494
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive the approximation on $[0,1]$ of functions $f(x)$ by interpolating spline-functions $s_r(f;x)$ of degree $2r+1$ and defect $r+1$ ($r=1,2,\dots$). Exact estimates for $|f(x)-s_r(f;x)|$ and $\|f(x)-s_r(f;x)\|_C$ on the class $W^mH_\omega$ for $m=1$, $r=1,2,\dots$ and $m=2,3$, $r=2$ for the case of convex $\omega(t)$, are derived.
@article{MZM_1971_9_5_a1,
author = {V. L. Velikin and N. P. Korneichuk},
title = {Accurate estimates of deviations of spline approximations to classes of differentiable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {483--494},
publisher = {mathdoc},
volume = {9},
number = {5},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/}
}
TY - JOUR AU - V. L. Velikin AU - N. P. Korneichuk TI - Accurate estimates of deviations of spline approximations to classes of differentiable functions JO - Matematičeskie zametki PY - 1971 SP - 483 EP - 494 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/ LA - ru ID - MZM_1971_9_5_a1 ER -
V. L. Velikin; N. P. Korneichuk. Accurate estimates of deviations of spline approximations to classes of differentiable functions. Matematičeskie zametki, Tome 9 (1971) no. 5, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_1971_9_5_a1/