Stabilization of solutions of linear differential equations in Hilbert space
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 415-420
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions, less stringent than those known at present, are found for the stabilization of a solution of a linear differential equation of the form $\frac{du}{dt}+A(t)u=f(t)$ in Hilbert space to a solution of the operational equation $Ax=f$, where $A$ is a positive self-adjoint operator. Some regularization algorithms (in A. N. Tikhonov's sense) for this equation are investigated.
@article{MZM_1971_9_4_a6,
author = {A. B. Bakushinskii},
title = {Stabilization of solutions of linear differential equations in {Hilbert} space},
journal = {Matemati\v{c}eskie zametki},
pages = {415--420},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a6/}
}
A. B. Bakushinskii. Stabilization of solutions of linear differential equations in Hilbert space. Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 415-420. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a6/