Stabilization of solutions of linear differential equations in Hilbert space
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 415-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions, less stringent than those known at present, are found for the stabilization of a solution of a linear differential equation of the form $\frac{du}{dt}+A(t)u=f(t)$ in Hilbert space to a solution of the operational equation $Ax=f$, where $A$ is a positive self-adjoint operator. Some regularization algorithms (in A. N. Tikhonov's sense) for this equation are investigated.
@article{MZM_1971_9_4_a6,
     author = {A. B. Bakushinskii},
     title = {Stabilization of solutions of linear differential equations in {Hilbert} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {415--420},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a6/}
}
TY  - JOUR
AU  - A. B. Bakushinskii
TI  - Stabilization of solutions of linear differential equations in Hilbert space
JO  - Matematičeskie zametki
PY  - 1971
SP  - 415
EP  - 420
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a6/
LA  - ru
ID  - MZM_1971_9_4_a6
ER  - 
%0 Journal Article
%A A. B. Bakushinskii
%T Stabilization of solutions of linear differential equations in Hilbert space
%J Matematičeskie zametki
%D 1971
%P 415-420
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a6/
%G ru
%F MZM_1971_9_4_a6
A. B. Bakushinskii. Stabilization of solutions of linear differential equations in Hilbert space. Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 415-420. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a6/