The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory)
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 409-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear equation $u'=A(t)u+f(t)$ with almost periodic coefficients is investigated in euclidean space. It is proved that if it has a bounded solution, then it has a Levitan almost-periodic function as a “limit” solution.
@article{MZM_1971_9_4_a5,
     author = {V. V. Zhikov},
     title = {The existence of {Levitan} almost-periodic solutions of linear systems (second complement to {Favard's} classical theory)},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--414},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory)
JO  - Matematičeskie zametki
PY  - 1971
SP  - 409
EP  - 414
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/
LA  - ru
ID  - MZM_1971_9_4_a5
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory)
%J Matematičeskie zametki
%D 1971
%P 409-414
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/
%G ru
%F MZM_1971_9_4_a5
V. V. Zhikov. The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory). Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 409-414. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/