The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory)
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 409-414
Voir la notice de l'article provenant de la source Math-Net.Ru
The linear equation $u'=A(t)u+f(t)$ with almost periodic coefficients is investigated in euclidean space. It is proved that if it has a bounded solution, then it has a Levitan almost-periodic function as a “limit” solution.
@article{MZM_1971_9_4_a5,
author = {V. V. Zhikov},
title = {The existence of {Levitan} almost-periodic solutions of linear systems (second complement to {Favard's} classical theory)},
journal = {Matemati\v{c}eskie zametki},
pages = {409--414},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/}
}
TY - JOUR AU - V. V. Zhikov TI - The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory) JO - Matematičeskie zametki PY - 1971 SP - 409 EP - 414 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/ LA - ru ID - MZM_1971_9_4_a5 ER -
V. V. Zhikov. The existence of Levitan almost-periodic solutions of linear systems (second complement to Favard's classical theory). Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 409-414. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a5/