Algebraic-polynomial approximation of functions satisfying a Lipschitz condition
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 441-447
Cet article a éte moissonné depuis la source Math-Net.Ru
For functions $f(x)\in KH^{(\alpha)}$ (satisfying the Lipschitz condition of order $\alpha$ ($0<\alpha<1$) with constant $K$ on $[-1, 1]$), the existence is proved of a sequence $P_n(f;\,x)$ of algebraic polynomials of degree $n=1,\,2,\,\dots$, such that $|f(x)-P_{n-1}(f;\,x)|\leqslant\sup\limits_{f\in KH^{(\alpha)}}E_n(f)[(1-x^2)^{\alpha/2}+o(1)]$ when $n\to\infty$, uniformly for $x\in[-1,\,1]$ , where $E_n(f)$ is the best approximation of $f(x)$ by polynomials of degree not higher than $n$.
@article{MZM_1971_9_4_a10,
author = {N. P. Korneichuk and A. I. Polovina},
title = {Algebraic-polynomial approximation of functions satisfying {a~Lipschitz} condition},
journal = {Matemati\v{c}eskie zametki},
pages = {441--447},
year = {1971},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a10/}
}
N. P. Korneichuk; A. I. Polovina. Algebraic-polynomial approximation of functions satisfying a Lipschitz condition. Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 441-447. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a10/