Algebraic-polynomial approximation of functions satisfying a~Lipschitz condition
Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 441-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions $f(x)\in KH^{(\alpha)}$ (satisfying the Lipschitz condition of order $\alpha$ ($0\alpha1$) with constant $K$ on $[-1, 1]$), the existence is proved of a sequence $P_n(f;\,x)$ of algebraic polynomials of degree $n=1,\,2,\,\dots$, such that $|f(x)-P_{n-1}(f;\,x)|\leqslant\sup\limits_{f\in KH^{(\alpha)}}E_n(f)[(1-x^2)^{\alpha/2}+o(1)]$ when $n\to\infty$, uniformly for $x\in[-1,\,1]$ , where $E_n(f)$ is the best approximation of $f(x)$ by polynomials of degree not higher than $n$.
@article{MZM_1971_9_4_a10,
     author = {N. P. Korneichuk and A. I. Polovina},
     title = {Algebraic-polynomial approximation of functions satisfying {a~Lipschitz} condition},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--447},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a10/}
}
TY  - JOUR
AU  - N. P. Korneichuk
AU  - A. I. Polovina
TI  - Algebraic-polynomial approximation of functions satisfying a~Lipschitz condition
JO  - Matematičeskie zametki
PY  - 1971
SP  - 441
EP  - 447
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a10/
LA  - ru
ID  - MZM_1971_9_4_a10
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%A A. I. Polovina
%T Algebraic-polynomial approximation of functions satisfying a~Lipschitz condition
%J Matematičeskie zametki
%D 1971
%P 441-447
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a10/
%G ru
%F MZM_1971_9_4_a10
N. P. Korneichuk; A. I. Polovina. Algebraic-polynomial approximation of functions satisfying a~Lipschitz condition. Matematičeskie zametki, Tome 9 (1971) no. 4, pp. 441-447. http://geodesic.mathdoc.fr/item/MZM_1971_9_4_a10/