Generalization of two theorems of M. I. Kadets concerning the indefinite integral of abstract almost periodic functions
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 311-321
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions are obtained for the almost periodicity (or almost automorphy) of an abstract function $f(t)$ on a group $G$ satisfying the difference equations $f(t\gamma)-f(t)=g_\gamma(t)$, where, for each $\gamma\in G$, the function $f(t)$ is almost periodic (or almost automorphic) (the difference problem). The investigation of the almost periodicity of the integral $\int_0^x\varphi(t)dt$ of an almost periodic function $\varphi(t)$ on the real line $R$ is reduced to a study of the difference problem.
@article{MZM_1971_9_3_a9,
author = {R. Boles Basit},
title = {Generalization of two theorems of {M.} {I.~Kadets} concerning the indefinite integral of abstract almost periodic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {311--321},
year = {1971},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a9/}
}
TY - JOUR AU - R. Boles Basit TI - Generalization of two theorems of M. I. Kadets concerning the indefinite integral of abstract almost periodic functions JO - Matematičeskie zametki PY - 1971 SP - 311 EP - 321 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a9/ LA - ru ID - MZM_1971_9_3_a9 ER -
R. Boles Basit. Generalization of two theorems of M. I. Kadets concerning the indefinite integral of abstract almost periodic functions. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 311-321. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a9/