Number of invariant measures with maximal entropy for translation in the space of sequences
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 291-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example is constructed of a topologically transitive dynamic system with positive entropy, having any assigned finite number of ergodic measures with respect to each of which the metric entropy is equal to the topological entropy.
@article{MZM_1971_9_3_a7,
     author = {M. S. Shtil'man},
     title = {Number of invariant measures with maximal entropy for translation in the space of sequences},
     journal = {Matemati\v{c}eskie zametki},
     pages = {291--302},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a7/}
}
TY  - JOUR
AU  - M. S. Shtil'man
TI  - Number of invariant measures with maximal entropy for translation in the space of sequences
JO  - Matematičeskie zametki
PY  - 1971
SP  - 291
EP  - 302
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a7/
LA  - ru
ID  - MZM_1971_9_3_a7
ER  - 
%0 Journal Article
%A M. S. Shtil'man
%T Number of invariant measures with maximal entropy for translation in the space of sequences
%J Matematičeskie zametki
%D 1971
%P 291-302
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a7/
%G ru
%F MZM_1971_9_3_a7
M. S. Shtil'man. Number of invariant measures with maximal entropy for translation in the space of sequences. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 291-302. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a7/