Number of invariant measures with maximal entropy for translation in the space of sequences
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 291-302
Voir la notice de l'article provenant de la source Math-Net.Ru
An example is constructed of a topologically transitive dynamic system with positive entropy, having any assigned finite number of ergodic measures with respect to each of which the metric entropy is equal to the topological entropy.
@article{MZM_1971_9_3_a7,
author = {M. S. Shtil'man},
title = {Number of invariant measures with maximal entropy for translation in the space of sequences},
journal = {Matemati\v{c}eskie zametki},
pages = {291--302},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a7/}
}
M. S. Shtil'man. Number of invariant measures with maximal entropy for translation in the space of sequences. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 291-302. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a7/