Husimi trees
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 253-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is solved of the construction of a Husimi tree (a connected graph in which each line belongs to not more than one simple cycle) for the case in which the length of simple cycles and the distance between any two points of $x_1, x_2, \dots, x_n$ is known, where $\{x_1, x_2, \dots, x_n\}$ is the set of all simple cycles and all hanging points. A necessary and sufficient condition is found for the existence of such a Husimi tree and its uniqueness is proved.
@article{MZM_1971_9_3_a3,
     author = {K. A. Zaretskii},
     title = {Husimi trees},
     journal = {Matemati\v{c}eskie zametki},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a3/}
}
TY  - JOUR
AU  - K. A. Zaretskii
TI  - Husimi trees
JO  - Matematičeskie zametki
PY  - 1971
SP  - 253
EP  - 262
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a3/
LA  - ru
ID  - MZM_1971_9_3_a3
ER  - 
%0 Journal Article
%A K. A. Zaretskii
%T Husimi trees
%J Matematičeskie zametki
%D 1971
%P 253-262
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a3/
%G ru
%F MZM_1971_9_3_a3
K. A. Zaretskii. Husimi trees. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 253-262. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a3/