Involution of manifolds with a set of fixed points diffeomorphic to real projective space
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 249-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if, on a manifold with an involution, the subset of fixed points is diffeomorphic to an even-dimensional real projective space, then the manifold is bordant to the complex projective space in the class of nonoriented bordisms.
@article{MZM_1971_9_3_a2,
     author = {A. S. Mishchenko},
     title = {Involution of manifolds with a set of fixed points diffeomorphic to real projective space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--252},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a2/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - Involution of manifolds with a set of fixed points diffeomorphic to real projective space
JO  - Matematičeskie zametki
PY  - 1971
SP  - 249
EP  - 252
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a2/
LA  - ru
ID  - MZM_1971_9_3_a2
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T Involution of manifolds with a set of fixed points diffeomorphic to real projective space
%J Matematičeskie zametki
%D 1971
%P 249-252
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a2/
%G ru
%F MZM_1971_9_3_a2
A. S. Mishchenko. Involution of manifolds with a set of fixed points diffeomorphic to real projective space. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 249-252. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a2/