Involution of manifolds with a set of fixed points diffeomorphic to real projective space
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 249-252
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if, on a manifold with an involution, the subset of fixed points is diffeomorphic to an even-dimensional real projective space, then the manifold is bordant to the complex projective space in the class of nonoriented bordisms.
@article{MZM_1971_9_3_a2,
author = {A. S. Mishchenko},
title = {Involution of manifolds with a set of fixed points diffeomorphic to real projective space},
journal = {Matemati\v{c}eskie zametki},
pages = {249--252},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a2/}
}
A. S. Mishchenko. Involution of manifolds with a set of fixed points diffeomorphic to real projective space. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 249-252. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a2/