Best-possible bounds of Fourier coefficients of functions of bounded variation with respect to the Haar system
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 355-363
Voir la notice de l'article provenant de la source Math-Net.Ru
Best-possible estimates are obtained for sums and series of absolute values of Fourier coefficients with respect to the Haar system on the class $V(0, 1)$ of functions of bounded variation on $[0, 1]$. These estimates are improvements of results obtained by P. L. Ul'yanov.
@article{MZM_1971_9_3_a13,
author = {L. G. Khomutenko},
title = {Best-possible bounds of {Fourier} coefficients of functions of bounded variation with respect to the {Haar} system},
journal = {Matemati\v{c}eskie zametki},
pages = {355--363},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a13/}
}
TY - JOUR AU - L. G. Khomutenko TI - Best-possible bounds of Fourier coefficients of functions of bounded variation with respect to the Haar system JO - Matematičeskie zametki PY - 1971 SP - 355 EP - 363 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a13/ LA - ru ID - MZM_1971_9_3_a13 ER -
L. G. Khomutenko. Best-possible bounds of Fourier coefficients of functions of bounded variation with respect to the Haar system. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a13/