Expansions in characteristic functions of the nonself-adjoint Schr\"odinger operator
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 333-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

Contour integration is used to obtain expansions in characteristic functions of the non-self-adjoint Schrödinger operator $-\Delta u(x)+q(x)u(x)$ in the space $L_2(E_n)$ ($n=2, 3$), where $q(x)$ is a complex-valued measurable function, $|q(x)|\leqslant Ce^{-\varepsilon|x|}$, and $\varepsilon$, and $C$ are positive constants.
@article{MZM_1971_9_3_a11,
     author = {Kh. Kh. Murtazin},
     title = {Expansions in characteristic functions of the nonself-adjoint {Schr\"odinger} operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--342},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a11/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
TI  - Expansions in characteristic functions of the nonself-adjoint Schr\"odinger operator
JO  - Matematičeskie zametki
PY  - 1971
SP  - 333
EP  - 342
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a11/
LA  - ru
ID  - MZM_1971_9_3_a11
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%T Expansions in characteristic functions of the nonself-adjoint Schr\"odinger operator
%J Matematičeskie zametki
%D 1971
%P 333-342
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a11/
%G ru
%F MZM_1971_9_3_a11
Kh. Kh. Murtazin. Expansions in characteristic functions of the nonself-adjoint Schr\"odinger operator. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 333-342. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a11/