Twist of deformation characteristics
Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 233-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a regular surface in three-dimensional euclidean space subject to deformation. The difference between the torsion of a curve $L$ on the original surface and the torsion of the corresponding curve on the isometric deformed surface at points corresponding by the isometry is called the twist of $L$. A formula is introduced expressing the twist of characteristics of hyperbolic deformation of a surface in terms of its gaussian flexion.
@article{MZM_1971_9_3_a0,
     author = {K. M. Belov},
     title = {Twist of deformation characteristics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {233--238},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a0/}
}
TY  - JOUR
AU  - K. M. Belov
TI  - Twist of deformation characteristics
JO  - Matematičeskie zametki
PY  - 1971
SP  - 233
EP  - 238
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a0/
LA  - ru
ID  - MZM_1971_9_3_a0
ER  - 
%0 Journal Article
%A K. M. Belov
%T Twist of deformation characteristics
%J Matematičeskie zametki
%D 1971
%P 233-238
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a0/
%G ru
%F MZM_1971_9_3_a0
K. M. Belov. Twist of deformation characteristics. Matematičeskie zametki, Tome 9 (1971) no. 3, pp. 233-238. http://geodesic.mathdoc.fr/item/MZM_1971_9_3_a0/