Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 193-198
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that every pseudo-Riemannian manifold $M^n_{(p,q)}$ with the $C^k$ metric ($3\leqslant k\leqslant\infty$) has an isometric $C^k$ imbedding in the large in $E_{(p',q')}^{n(n+1)(3n+11)/2}$, $p'\geqslant(n+1)^2$, $q'\geqslant(n+1)^2$.
@article{MZM_1971_9_2_a9,
author = {D. D. Sokolov},
title = {Imbedding of {pseudo-Riemannian} manifolds in a pseudo-euclidean space},
journal = {Matemati\v{c}eskie zametki},
pages = {193--198},
year = {1971},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a9/}
}
D. D. Sokolov. Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a9/