Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 193-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every pseudo-Riemannian manifold $M^n_{(p,q)}$ with the $C^k$ metric ($3\leqslant k\leqslant\infty$) has an isometric $C^k$ imbedding in the large in $E_{(p',q')}^{n(n+1)(3n+11)/2}$, $p'\geqslant(n+1)^2$, $q'\geqslant(n+1)^2$.
@article{MZM_1971_9_2_a9,
     author = {D. D. Sokolov},
     title = {Imbedding of {pseudo-Riemannian} manifolds in a pseudo-euclidean space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a9/}
}
TY  - JOUR
AU  - D. D. Sokolov
TI  - Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space
JO  - Matematičeskie zametki
PY  - 1971
SP  - 193
EP  - 198
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a9/
LA  - ru
ID  - MZM_1971_9_2_a9
ER  - 
%0 Journal Article
%A D. D. Sokolov
%T Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space
%J Matematičeskie zametki
%D 1971
%P 193-198
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a9/
%G ru
%F MZM_1971_9_2_a9
D. D. Sokolov. Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a9/