Foliation without limit cycles
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 181-191
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved for a closed manifold $M$ with an oriented foliated structure of codimension 1 without limit cycles, supplemented by a foliation of one-dimensional normals: if every normal in $M$ intersects every leaf, the same is true of the induced foliation on $\widetilde{M}$ (a universal covering of $M$).
@article{MZM_1971_9_2_a8,
author = {A. L. Brakhman},
title = {Foliation without limit cycles},
journal = {Matemati\v{c}eskie zametki},
pages = {181--191},
year = {1971},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a8/}
}
A. L. Brakhman. Foliation without limit cycles. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 181-191. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a8/