Foliation without limit cycles
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 181-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved for a closed manifold $M$ with an oriented foliated structure of codimension 1 without limit cycles, supplemented by a foliation of one-dimensional normals: if every normal in $M$ intersects every leaf, the same is true of the induced foliation on $\widetilde{M}$ (a universal covering of $M$).
@article{MZM_1971_9_2_a8,
     author = {A. L. Brakhman},
     title = {Foliation without limit cycles},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a8/}
}
TY  - JOUR
AU  - A. L. Brakhman
TI  - Foliation without limit cycles
JO  - Matematičeskie zametki
PY  - 1971
SP  - 181
EP  - 191
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a8/
LA  - ru
ID  - MZM_1971_9_2_a8
ER  - 
%0 Journal Article
%A A. L. Brakhman
%T Foliation without limit cycles
%J Matematičeskie zametki
%D 1971
%P 181-191
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a8/
%G ru
%F MZM_1971_9_2_a8
A. L. Brakhman. Foliation without limit cycles. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 181-191. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a8/