A functional equation
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 161-170
Voir la notice de l'article provenant de la source Math-Net.Ru
Existence theorems for and the determination of continuous solutions, defined on the real axis $R$, of the functional equation $f(t)=A[t,f(at-b),f(at-c)]$, where $a$, $b$ and $c$ are real parameters, $A: R\times E\times E\to E$ is a continuous operator, and $E$ is a Banach space.
@article{MZM_1971_9_2_a6,
author = {V. S. Kozyakin},
title = {A functional equation},
journal = {Matemati\v{c}eskie zametki},
pages = {161--170},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a6/}
}
V. S. Kozyakin. A functional equation. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 161-170. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a6/