A functional equation
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 161-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence theorems for and the determination of continuous solutions, defined on the real axis $R$, of the functional equation $f(t)=A[t,f(at-b),f(at-c)]$, where $a$, $b$ and $c$ are real parameters, $A: R\times E\times E\to E$ is a continuous operator, and $E$ is a Banach space.
@article{MZM_1971_9_2_a6,
     author = {V. S. Kozyakin},
     title = {A functional equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a6/}
}
TY  - JOUR
AU  - V. S. Kozyakin
TI  - A functional equation
JO  - Matematičeskie zametki
PY  - 1971
SP  - 161
EP  - 170
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a6/
LA  - ru
ID  - MZM_1971_9_2_a6
ER  - 
%0 Journal Article
%A V. S. Kozyakin
%T A functional equation
%J Matematičeskie zametki
%D 1971
%P 161-170
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a6/
%G ru
%F MZM_1971_9_2_a6
V. S. Kozyakin. A functional equation. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 161-170. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a6/