Uniform and tangential harmonic approximation of continuous functions on arbitrary sets
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 131-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions which must be imposed on a set $E$ are derived, such that functions continuous on $E\subset G$ can be approximated by functions harmonic in a region $G\subset R^n$.
@article{MZM_1971_9_2_a3,
     author = {A. A. Shaginyan},
     title = {Uniform and tangential harmonic approximation of continuous functions on arbitrary sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a3/}
}
TY  - JOUR
AU  - A. A. Shaginyan
TI  - Uniform and tangential harmonic approximation of continuous functions on arbitrary sets
JO  - Matematičeskie zametki
PY  - 1971
SP  - 131
EP  - 142
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a3/
LA  - ru
ID  - MZM_1971_9_2_a3
ER  - 
%0 Journal Article
%A A. A. Shaginyan
%T Uniform and tangential harmonic approximation of continuous functions on arbitrary sets
%J Matematičeskie zametki
%D 1971
%P 131-142
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a3/
%G ru
%F MZM_1971_9_2_a3
A. A. Shaginyan. Uniform and tangential harmonic approximation of continuous functions on arbitrary sets. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 131-142. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a3/