Uniform and tangential harmonic approximation of continuous functions on arbitrary sets
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 131-142
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions which must be imposed on a set $E$ are derived, such that functions continuous on $E\subset G$ can be approximated by functions harmonic in a region $G\subset R^n$.
@article{MZM_1971_9_2_a3,
author = {A. A. Shaginyan},
title = {Uniform and tangential harmonic approximation of continuous functions on arbitrary sets},
journal = {Matemati\v{c}eskie zametki},
pages = {131--142},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a3/}
}
A. A. Shaginyan. Uniform and tangential harmonic approximation of continuous functions on arbitrary sets. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 131-142. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a3/