Finite factorizable groups
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 223-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some theorems are proved concerning finite groups which are the products of two subgroups, one of which is $\pi$-decomposable and the other nilpotent.
@article{MZM_1971_9_2_a12,
     author = {A. V. Romanovskii},
     title = {Finite factorizable groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a12/}
}
TY  - JOUR
AU  - A. V. Romanovskii
TI  - Finite factorizable groups
JO  - Matematičeskie zametki
PY  - 1971
SP  - 223
EP  - 231
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a12/
LA  - ru
ID  - MZM_1971_9_2_a12
ER  - 
%0 Journal Article
%A A. V. Romanovskii
%T Finite factorizable groups
%J Matematičeskie zametki
%D 1971
%P 223-231
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a12/
%G ru
%F MZM_1971_9_2_a12
A. V. Romanovskii. Finite factorizable groups. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 223-231. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a12/