A cyclic inequality
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 113-119
Cet article a éte moissonné depuis la source Math-Net.Ru
The existence of $\lim\limits_{n\to\infty}\gamma_n$, where $$ \gamma_n=\inf_{a_i>0}\left\{\left[\frac{a_1}{a_2+a_3}+\dots+\frac{a_{n-1}}{a_n+a_1}+\frac{a_n}{a_1+a_2}\right]:\frac{n}2\right\}. $$ is proved, and a simple method of calculating it is derived.
@article{MZM_1971_9_2_a1,
author = {V. G. Drinfel'd},
title = {A cyclic inequality},
journal = {Matemati\v{c}eskie zametki},
pages = {113--119},
year = {1971},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a1/}
}
V. G. Drinfel'd. A cyclic inequality. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 113-119. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a1/