Approximation of classes of differentiable functions
Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are derived under which $$ F=\sup_{||f^{(k)}||_{L_p(S)}\leqslant1}\,\inf_{||\varphi^{(l)}||_{L_r(S)}\leqslant n}||f-\varphi||_{L_p(S)} $$ is finite or infinite. The value of $F$ is calculated for certain special cases.
@article{MZM_1971_9_2_a0,
     author = {V. V. Arestov and V. N. Gabushin},
     title = {Approximation of classes of differentiable functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a0/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - V. N. Gabushin
TI  - Approximation of classes of differentiable functions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 105
EP  - 112
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a0/
LA  - ru
ID  - MZM_1971_9_2_a0
ER  - 
%0 Journal Article
%A V. V. Arestov
%A V. N. Gabushin
%T Approximation of classes of differentiable functions
%J Matematičeskie zametki
%D 1971
%P 105-112
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a0/
%G ru
%F MZM_1971_9_2_a0
V. V. Arestov; V. N. Gabushin. Approximation of classes of differentiable functions. Matematičeskie zametki, Tome 9 (1971) no. 2, pp. 105-112. http://geodesic.mathdoc.fr/item/MZM_1971_9_2_a0/