Holonomy groups of four-dimensional pseudo-Riemann spaces
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 59-66
Voir la notice de l'article provenant de la source Math-Net.Ru
Four-dimensional pseudo-Riemann spaces $\mathcal{V}^4$ with a metric having the signature $(3, 1)$ are investigated. Subgroups of the Lorentz group are described which can be holonomy groups of the pseudo-Riemann spaces $\mathcal{V}^4$: a) with zero Ricci curvature and b) symmetric. The reducibility of the above class of spaces is determined as a function of the holonomy group.
@article{MZM_1971_9_1_a7,
author = {V. V. Astrakhantsev},
title = {Holonomy groups of four-dimensional {pseudo-Riemann} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {59--66},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a7/}
}
V. V. Astrakhantsev. Holonomy groups of four-dimensional pseudo-Riemann spaces. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a7/