Spectrum of the nonself-adjoint Schr\"odinger operator in unbounded regions
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 19-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the discrete spectrum of the operator $-\Delta+q(x)$ in the space $L_2(E_{2k})$ ($k\geqslant1$) where $q(x)$ is a measurable complex-valued function satisfying the condition $|q(x)|\leqslant Ce^{-\varepsilon|x|}$, having no finite limit points, and for $k=1$ the discrete spectrum consists of a finite number of points.
@article{MZM_1971_9_1_a2,
     author = {Kh. Kh. Murtazin},
     title = {Spectrum of the nonself-adjoint {Schr\"odinger} operator in unbounded regions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a2/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
TI  - Spectrum of the nonself-adjoint Schr\"odinger operator in unbounded regions
JO  - Matematičeskie zametki
PY  - 1971
SP  - 19
EP  - 26
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a2/
LA  - ru
ID  - MZM_1971_9_1_a2
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%T Spectrum of the nonself-adjoint Schr\"odinger operator in unbounded regions
%J Matematičeskie zametki
%D 1971
%P 19-26
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a2/
%G ru
%F MZM_1971_9_1_a2
Kh. Kh. Murtazin. Spectrum of the nonself-adjoint Schr\"odinger operator in unbounded regions. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a2/