Spectrum of the nonself-adjoint Schrödinger operator in unbounded regions
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 19-26
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the discrete spectrum of the operator $-\Delta+q(x)$ in the space $L_2(E_{2k})$ ($k\geqslant1$) where $q(x)$ is a measurable complex-valued function satisfying the condition $|q(x)|\leqslant Ce^{-\varepsilon|x|}$, having no finite limit points, and for $k=1$ the discrete spectrum consists of a finite number of points.
@article{MZM_1971_9_1_a2,
author = {Kh. Kh. Murtazin},
title = {Spectrum of the nonself-adjoint {Schr\"odinger} operator in unbounded regions},
journal = {Matemati\v{c}eskie zametki},
pages = {19--26},
year = {1971},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a2/}
}
Kh. Kh. Murtazin. Spectrum of the nonself-adjoint Schrödinger operator in unbounded regions. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a2/