Some remarks concerning the individual ergodic theorem of information theory
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 93-103
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $(X,\mu,T)$ be an ergodic dynamic system and let $\xi=(C_1,C_2,\dots)$ be a discrete decomposition of $X$. Conditions are considered for the existence almost everywhere of $$ \lim_{n\to\infty}\frac1n|\log\mu(C_{\xi n}(x))|, $$ where $C_{\xi n}(x)$ is the element of the decomposition $\xi^n=\xi\vee T\xi\vee\dots containing $x$. It is proved that the condition $H(\xi)<\infty$ is close to being necessary. If $T$ is a Markov automorphism and $\xi$ is the decomposition into states, then the limit exists, even if $H(\xi)=\infty$, and is equal to the entropy of the chain.
@article{MZM_1971_9_1_a13,
author = {B. S. Pitskel'},
title = {Some remarks concerning the individual ergodic theorem of information theory},
journal = {Matemati\v{c}eskie zametki},
pages = {93--103},
year = {1971},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a13/}
}
B. S. Pitskel'. Some remarks concerning the individual ergodic theorem of information theory. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a13/