Some remarks concerning the individual ergodic theorem of information theory
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 93-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,\mu,T)$ be an ergodic dynamic system and let $\xi=(C_1,C_2,\dots)$ be a discrete decomposition of $X$. Conditions are considered for the existence almost everywhere of $$ \lim_{n\to\infty}\frac1n|\log\mu(C_{\xi n}(x))|, $$ where $C_{\xi n}(x)$ is the element of the decomposition $\xi^n=\xi\vee T\xi\vee\dots$ containing $x$. It is proved that the condition $H(\xi)\infty$ is close to being necessary. If $T$ is a Markov automorphism and $\xi$ is the decomposition into states, then the limit exists, even if $H(\xi)=\infty$, and is equal to the entropy of the chain.
@article{MZM_1971_9_1_a13,
     author = {B. S. Pitskel'},
     title = {Some remarks concerning the individual ergodic theorem of information theory},
     journal = {Matemati\v{c}eskie zametki},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a13/}
}
TY  - JOUR
AU  - B. S. Pitskel'
TI  - Some remarks concerning the individual ergodic theorem of information theory
JO  - Matematičeskie zametki
PY  - 1971
SP  - 93
EP  - 103
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a13/
LA  - ru
ID  - MZM_1971_9_1_a13
ER  - 
%0 Journal Article
%A B. S. Pitskel'
%T Some remarks concerning the individual ergodic theorem of information theory
%J Matematičeskie zametki
%D 1971
%P 93-103
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a13/
%G ru
%F MZM_1971_9_1_a13
B. S. Pitskel'. Some remarks concerning the individual ergodic theorem of information theory. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a13/