Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 89-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ be a solution of the following boundary-value problem: $u|_\Gamma=0$, where $\Gamma$ is a closed convex curve and $\Delta u=-1$ in the region $D$ bounded by $\Gamma$. Then $u$ has only one local maximum, and all its level curves are convex.
@article{MZM_1971_9_1_a12,
     author = {L. G. Makar-Limanov},
     title = {Solution of {Dirichlet's} problem for the equation $\Delta u=-1$ in a convex region},
     journal = {Matemati\v{c}eskie zametki},
     pages = {89--92},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a12/}
}
TY  - JOUR
AU  - L. G. Makar-Limanov
TI  - Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region
JO  - Matematičeskie zametki
PY  - 1971
SP  - 89
EP  - 92
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a12/
LA  - ru
ID  - MZM_1971_9_1_a12
ER  - 
%0 Journal Article
%A L. G. Makar-Limanov
%T Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region
%J Matematičeskie zametki
%D 1971
%P 89-92
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a12/
%G ru
%F MZM_1971_9_1_a12
L. G. Makar-Limanov. Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 89-92. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a12/