Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 89-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$ be a solution of the following boundary-value problem: $u|_\Gamma=0$, where $\Gamma$ is a closed convex curve and $\Delta u=-1$ in the region $D$ bounded by $\Gamma$. Then $u$ has only one local maximum, and all its level curves are convex.
@article{MZM_1971_9_1_a12,
author = {L. G. Makar-Limanov},
title = {Solution of {Dirichlet's} problem for the equation $\Delta u=-1$ in a convex region},
journal = {Matemati\v{c}eskie zametki},
pages = {89--92},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a12/}
}
L. G. Makar-Limanov. Solution of Dirichlet's problem for the equation $\Delta u=-1$ in a convex region. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 89-92. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a12/