Relation between summability and absolute summability by Ces\`aro means of complex order
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a series is absolute summable by a Cesàro $(C,\alpha)$ method, then it is summable $(C,\beta)$ for any $\beta$, such that $\mathrm{Re}\,\alpha=\mathrm{Re}\,\beta>-1$.
@article{MZM_1971_9_1_a1,
     author = {I. I. Volkov},
     title = {Relation between summability and absolute summability by {Ces\`aro} means of complex order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a1/}
}
TY  - JOUR
AU  - I. I. Volkov
TI  - Relation between summability and absolute summability by Ces\`aro means of complex order
JO  - Matematičeskie zametki
PY  - 1971
SP  - 13
EP  - 18
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a1/
LA  - ru
ID  - MZM_1971_9_1_a1
ER  - 
%0 Journal Article
%A I. I. Volkov
%T Relation between summability and absolute summability by Ces\`aro means of complex order
%J Matematičeskie zametki
%D 1971
%P 13-18
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a1/
%G ru
%F MZM_1971_9_1_a1
I. I. Volkov. Relation between summability and absolute summability by Ces\`aro means of complex order. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a1/