Relation between summability and absolute summability by Ces\`aro means of complex order
Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 13-18
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a series is absolute summable by a Cesàro $(C,\alpha)$ method, then it is summable $(C,\beta)$ for any $\beta$, such that $\mathrm{Re}\,\alpha=\mathrm{Re}\,\beta>-1$.
@article{MZM_1971_9_1_a1,
author = {I. I. Volkov},
title = {Relation between summability and absolute summability by {Ces\`aro} means of complex order},
journal = {Matemati\v{c}eskie zametki},
pages = {13--18},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a1/}
}
I. I. Volkov. Relation between summability and absolute summability by Ces\`aro means of complex order. Matematičeskie zametki, Tome 9 (1971) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/MZM_1971_9_1_a1/