On the structure of finite commutative rings with an identity
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 679-688
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe the structure of the finite primary rings of principal ideals; we prove that every such ring is the factor-ring of the ring of integers of a finite extension of the field of rational $p$-adic numbers; we touch on the problem of the number of nonisomorphic rings of this type with a fixed number of elements.
@article{MZM_1971_10_6_a9,
author = {A. A. Nechaev},
title = {On the structure of finite commutative rings with an identity},
journal = {Matemati\v{c}eskie zametki},
pages = {679--688},
year = {1971},
volume = {10},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a9/}
}
A. A. Nechaev. On the structure of finite commutative rings with an identity. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 679-688. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a9/