On the structure of finite commutative rings with an identity
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 679-688.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of the finite primary rings of principal ideals; we prove that every such ring is the factor-ring of the ring of integers of a finite extension of the field of rational $p$-adic numbers; we touch on the problem of the number of nonisomorphic rings of this type with a fixed number of elements.
@article{MZM_1971_10_6_a9,
     author = {A. A. Nechaev},
     title = {On the structure of finite commutative rings with an identity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {679--688},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a9/}
}
TY  - JOUR
AU  - A. A. Nechaev
TI  - On the structure of finite commutative rings with an identity
JO  - Matematičeskie zametki
PY  - 1971
SP  - 679
EP  - 688
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a9/
LA  - ru
ID  - MZM_1971_10_6_a9
ER  - 
%0 Journal Article
%A A. A. Nechaev
%T On the structure of finite commutative rings with an identity
%J Matematičeskie zametki
%D 1971
%P 679-688
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a9/
%G ru
%F MZM_1971_10_6_a9
A. A. Nechaev. On the structure of finite commutative rings with an identity. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 679-688. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a9/