Constructing block designs of elements or residue rings with a composite modulus
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 649-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a construction of cyclic BIB designs with parameters $b, v, r, k$, and $\lambda$ such that $\lambda=k-1$, $k\geqslant3$, and $p\equiv1\pmod{k}$ for each prime divisor $p$ of the number $v$. The existence is proven of bases consisting of $(v-1)/k$ blocks and, for $v=p^\alpha$, this base is given explicitly.
@article{MZM_1971_10_6_a6,
     author = {B. T. Rumov},
     title = {Constructing block designs of elements or residue rings with a composite modulus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {649--658},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a6/}
}
TY  - JOUR
AU  - B. T. Rumov
TI  - Constructing block designs of elements or residue rings with a composite modulus
JO  - Matematičeskie zametki
PY  - 1971
SP  - 649
EP  - 658
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a6/
LA  - ru
ID  - MZM_1971_10_6_a6
ER  - 
%0 Journal Article
%A B. T. Rumov
%T Constructing block designs of elements or residue rings with a composite modulus
%J Matematičeskie zametki
%D 1971
%P 649-658
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a6/
%G ru
%F MZM_1971_10_6_a6
B. T. Rumov. Constructing block designs of elements or residue rings with a composite modulus. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 649-658. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a6/