Constructing block designs of elements or residue rings with a composite modulus
Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 649-658
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper provides a construction of cyclic BIB designs with parameters $b, v, r, k$, and $\lambda$ such that $\lambda=k-1$, $k\geqslant3$, and $p\equiv1\pmod{k}$ for each prime divisor $p$ of the number $v$. The existence is proven of bases consisting of $(v-1)/k$ blocks and, for $v=p^\alpha$, this base is given explicitly.
@article{MZM_1971_10_6_a6,
author = {B. T. Rumov},
title = {Constructing block designs of elements or residue rings with a composite modulus},
journal = {Matemati\v{c}eskie zametki},
pages = {649--658},
year = {1971},
volume = {10},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a6/}
}
B. T. Rumov. Constructing block designs of elements or residue rings with a composite modulus. Matematičeskie zametki, Tome 10 (1971) no. 6, pp. 649-658. http://geodesic.mathdoc.fr/item/MZM_1971_10_6_a6/